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Dynamics of a neural network with hierarchically stored 
patterns 
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Abstract. We study the dynamics of a strongly diluted and a non-diluted hierarchical 
model. The first one is solved exactly. The phase diagram and the size of the attraction 
basins of the fixed points of the dynamics are calculated and their behaviour is compared. 

1. Introduction 

Neural networks have been proposed as models of content-addressable or associative 
memories (Little 1974, Hopfield 1982) in an attempt to explain properties of the nervous 
systems in terms of the behaviour of two-state neurons. 

The thermodynamical properties of these models were extensively studied (Pereto 
1984, Amit et a1 1985a, 1987, Crisanti et a1 1986) and they can be considered fully 
understood: the system can store and retrieve a quantity of patterns proportional to 
the number of neurons with a small number of errors (the maximum value of the 
coefficient of proportionality is a =0.14). However, these models have a number of 
drawbacks as candidates for modelling real nervous systems. The most important 
unrealistic features are the symmetry of the synaptic connections, the full connectivity 
and the quasi-orthogonality of the stored patterns. 

One of the central features of the human brain is its ability to store and to access 
a huge and diverse amount of information, which consists not of isolated facts but 
rather in patterns correlated in a complex, general way with each other. Then it is 
desirable to study models which can provide insight in an intermediate regime when 
there is a special type of correlation, where the patterns are organised according to a 
hierarchical structure. 

If the synaptic connections are not symmetric then the thermodynamical formalism 
cannot be applied because there is no Hamiltonian that allows the use of the equilibrium 
approach. So we are forced to develop a dynamical theory to describe the behaviour 
of the system, as well as to have some insight into the nature of its attractors. The 
solution of this problem is greatly simplified when there is not only asymmetry but 
also strong dilution (Derrida er al 1987). In this model the number of synapses per 
neuron is lower than the logarithm of the number of neurons. This is not a realistic 
assumption because in the human brain there are about 10"' neurons and each of them 
is connected to lo4 other neurons. The number of stored patterns is proportional to 
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the average coordination number e of a neuron and the maximum coefficient is 
a = 2/7r. This model has been generalised (Kree et a1 1987) for a connectivity per 
neuron tending to zero in the thermodynamic limit without the restriction ? << In( N). 

Exact solutions of the dynamical problem were also found for different models 
with a finite number of stored patterns (Riedel er a1 1988, Coolen et a1 1988). All 
these solutions consist of a set of coupled recurrence equations for the overlaps between 
the state of the spins and some chosen memorised patterns. 

Storing correlated patterns forces us to modify the learning rule because Hebb’s 
rule is not useful in this case. Rules that can store an extensive number of patterns 
with arbitrary correlation have been proposed (Personnaz et a1 1985) but they are 
non-local. On the other hand, many studies have been done on simpler rules that store 
hierarchically organised patterns (Parga et a1 1986, Dotsenko 1986, Feigelman et a1 
1987, Gutfreund 1988, Bacci et a1 1989a, b) through different techniques such as 
numerical simulations and thermodynamical analysis. 

The scheme developed by Feigelman er a1 for generating p hierarchically correlated 
patterns is the following: first for each category we choose N ,  random numbers 
5: = 1, -1 (a = 1, .  . . , N, with equal probability); second we select p = RN,  random 
numbers PP’= 1, 0 (a = 1 , .  . . , N,;  y = 1,. . . , R )  with probability c or 1 - c ( O <  c < 
1/2). The value of the pattern ( a ,  y )  is given by 

5;’ = I$:( 1 - 2 p 3 .  (1) 

This process is repeated independently for each site i. The orthogonal patterns 5; are 
called classes. I t  is easy to see that two patterns in the same class have an overlap 
q = (1 -2c)’ and that two patterns belonging to different classes have a null overlap. 

The learning rule is given by 

where A is a parameter that controls the relative weight of the classes and the memorised 
patterns in the learning rule. For A = A. = c ( 1 -  c )  this learning rule becomes the one 
proposed by Parga et a1 (1986). The storage capacity of this system is of the same 
order of magnitude as the storage capacity in the Hopfield model. 

In this work we study the dynamical behaviour of neural networks with hierarchi- 
cally organised patterns. In section 2 this will be done for a learning rule that is a 
strongly diluted version of ( 2 ) .  In section 3 the non-diluted case is examined and an 
exact solution is found for a finite number of stored patterns. An extension for an 
extensive number of memorised patterns is considered. Section 4 contains a comparison 
of the results and the conclusions. 

2. Dynamics of the strongly diluted model 

In this model the synaptic interactions are: 

TJ = JIJcl ,  (3) 

~ ~ ~ 1 , ~ = ~ ~ - ~ / ~ ~ ~ ~ ~ , , ~ + ~ ~ / ~ ~ ~ ~ ~ , , - 1 ~  (4) 

where the JI, are given by (2) and c, are random variables with distribution 

where 2. << log( N). 



Neural network with hierarchically stored patterns 1803 

The field h , ( t )  is evaluated at each site i 

and all the spins are updated simultaneously according to 

(6) 
with probability 1/[ 1 + exp( -2h , (  t ) /  T ) ]  
with probability 1/[1 +exp(2h,( t ) /  T ) ]  

s,( t + 1) = 

where T is introduced as a generalised temperature. Using the master equation 
for the spin distribution we can calculate the thermal average of spin s at time 
t +  1, i.e. ( s , ( t +  l ) ) T  =tanh ( h , ( t ) / T ) .  

We consider the evolution of a configuration that has a macroscopic overlap with 
one class and two memorised patterns in this class. The relative quantities are 

but instead of studying the temporal evolution of the overlap with the patterns it is 
more convenient to consider the overlaps with the fluctuation, which are defined by 

and are related to the overlaps with the patterns through 

ma, = (1 - 2 c ) m ,  + 2 A U a ,  . (9) 
To solve the dynamics we split the internal field in two parts: one corresponding 

to the condensed patterns and the second to all the others: 

t ; h , (  t )  = m ,  + (c  - p t ' )  U , ,  + ( c  - p : 2 )  UI2 

with (a, y )  f ( 1 ,  l ) ,  ( 1 , 2 ) .  Here ( ) denotes average over the disorder. 
Due to the condition of strong dilution (Derrida er a1 1987) spins s,( I )  depend on 

different sites at t = O  and so they are uncorrelated. Moreover, the values s , ( t )  and 
s,( t + n )  are also uncorrelated for n 3 1 because all the sites in the tree of ancestors 
are different with probability one. The correlations being absent, we can replace the 
second term of the field by a Gaussian variable, the dispersion of which can be 
calculated from (10) giving &. For diluted models a is defined as ( p  - 1)/  6. It is 
important to remark that it is not enough that 6/ N + 0 in the thermodynamic limit; 
a logarithmic dilution to neglect correlations is necessary (Kree er al 1987). 

After averaging over the remaining classes and memorised patterns we can write 
the recurrence equations for m , ,  U , ,  and U , > :  

m , ( t  + 1) = c' W +  c ( 1 -  c ) ( x  + Y ) +  ( 1  - c ) ' ~  

A0 
A 

A" 
A 

U,, (  t +  1) =- { - c w +  ( c  - 1 ) X  + CY+ (1 - c ) Z }  

UI2( t + 1) =- { - c W +  ( c  - 1) Y + c X  + ( 1  - c ) Z }  
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where 

e-)'- 
W =  Ix dy- tanh((m,  + ( c  - 1) U , ,  + ( c -  1) U I 2 - - m ) /  T )  

- x  J;; 
x - \ 2  e 

X = 5 dy- tanh(( m ,  + ( c  - 1) U ,  I + cU12 - v m ) /  T )  
- X  J;; 

X - , 2  e 
Z = 5 dy-tanh((m, + cU,,+ cUI2-v'%?)/ T )  

- x  J;; 

and a ' =  ( ~ ( h ~ / h ) ~ .  
Starting from particular initial values we iterate these equations until a fixed point 

is reached. Let us summarise the picture that emerges. 
Figure 1 shows the behaviour at  T =  0. Above the curve 0," m ,  = m, ,  = m,, = 0. 

This means that the system is not able to remember anything. Between af and a," 
m, # 0 and  m,, = m l 2  = 0. This fixed point corresponds to the class but not the stored 
patterns. Between cy," and af m, # 0 and  m , ,  # 0, m,, = O  o r  m,,  = 0, m,, # 0. The 
system remembers pattern 1 o r  2 but not both. Finally below a," m, # 0 and  m,, = m,, # 
0. The system cannot distinguish between the two patterns. This behaviour is qualita- 
tively different to that obtained by Derrida et a1 because in that case the symmetric 
solutions appear for a value of a greater than the one for which both patterns can be 
distinguished (m,  # 0 and  0 # m,, # m,? # 0), moreover for this solution the system can 
distinguish between the two patterns although none of their overlaps are zero. Perhaps 
this is due  to the fact that in Derrida et a1 (1987), correlated patterns are being stored 
using Hebb's rule. 

' I d  

a i  

0 
1.0 1.2 1 4  1.8 2 .o 

A I A ,  
Figure 1. Storage capacity as a function of the parameter A / &  at T = 0 for the strongly 
diluted model with 9 =0.5. Above a," all the overlaps are null. Between a," and a," only 
the overlap with the class is non-null. Between a: and a: there is also a non-null overlap 
with one pattern. Below a: all the overlaps are non-zero; furthermore the overlaps with 
the two stored patterns are equal. 
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In figure 2 we show the retrieval diagram for a = 0. We can see the same four regions. 
In  figures 3 and 4 the diagrams a - T are shown for two values of A/A, (1 and  1.5 

respectively). In figure 3 a," and a: coincide at A / A o =  1, as is also predicted by the 
thermodynamical analysis of the non-diluted model (Feigelman et a1 1987). 

Some analytical properties of the phase diagrams are possible to obtain. The value 
a," at T = 0 is given by f '  (0) = 1 where 

because the other overlaps are zero. We can solve it to obtain a," = (2 /7r ) (A/AO) ' .  

A I A o  
Figure 2. Critical temperature as a function of the parameter A / &  for the strongly diluted 
model with q = 0.5. 

T 
Figure 3. Storage capacity as a function of temperature at A/&,= 1 for the strongly diluted 
model with q = 0.5. 
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Figure 4. Storage capacity as a function of temperature at Alp,= 1.5 for the strongly 
diluted model with q = 0.5. 

Figure 5. Size of the attraction basins as a function 
of h/A, at a = 0.15 for the strongly diluted model 
with q = 0.5. ( a )  Size of the attractors that have a 
non-null overlap only with the class NA. ( b )  Size 
of the attractors that have a non-null overlap only 
with the class and one pattern N R .  ( c )  Size of the 
attractors that have a non-null overlap with the class 
and two patterns N S .  
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Similarly the value T t  at a = 0 is given by g'(0) = 1 where 

g( m )  = tanh( m /  T )  (13)  

from where the value T t  = 1, independently of A / A o ,  is derived. 
We can obtain this information because this transition is second order justifying 

the expansion in powers. The method is not applicable to the other transitions because 
they are first order as we shall see below. 

Although the configurations follow a heat bath dynamics the dynamical process in 
(11) is deterministic and the configuration space is divided into separate basins of 
attraction of the fixed points of (1 1). We define the size of each attractor as the relative 
number of initial configurations which flow to that attractor. We choose randomly 
three values of the overlaps and iterate (11) until a fixed point is reached. This 
procedure is repeated 10 000 times to obtain the size with an error about 1%. In figures 
5 (  a, 5, c ) ,  we can see the size of the basin of the statcs that have overlap only with the 
class ( N A ) ,  with only one stored pattern ( N R )  and with the two stored patterns 
respectively ( N s )  for a = 0.1 5,  T = 0 as a function of A / A o .  The transitions at a," and 
a: have a first-order character because the size of the corresponding attraction basins 
changes suddenly. When one attractor reaches the border between two basins its basin 
of attraction suddenly shrinks to zero and is incorporated in the other. A similar 
behaviour is obtained keeping A/A,]  fixed and varying a. 

In figures 6 ( a ,  b )  we show schematically the shape of the attraction basins when 
we condense only one pattern and the corresponding category for A / A o =  1 and 
A / A , =  1.5. The calculation was done iterating (11) with U,?=O. The arrows show 
the flow of the fixed points as a function of a for O <  a < a,". When A / A , >  1 the 

0 

-1 

- 1  0 1 
Figure 6. Schematic shapes of the attraction basins for a = O . O l ,  q =0.5 and ( a )  A / A o =  
I ;  ( b )  A/&,=  1.5. The arrows show the flow of the attractors as a function of a. For 
a > 2 / ~ r  the only fixed point I S  zero. 
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transition is first order because a macroscopic fraction of the phase space changes 
from one  fixed point to another. On the other hand for A / A h , =  1 both fixed points 
collapse simultaneously to zero which becomes the only stable fixed point. 

3. Dynamics of the non-diluted model 

The synaptic interactions are given by (2).  Following van Hemmen et a1 (1986) the 
solution can be achieved introducing sublattices I ( 2 )  = { i / ( t r ,  PP’) = X} where 2 is a 
vector with N ,  + RN,  components. Their first N ,  components are 1 or -1 with equal 
probability and  the last RN,  components are 1 or  0 with probability c or 1 - c. If the 
total number of patterns p verifies 2” >> N (which corresponds to a = 0) then each 
sublattice contains a macroscopic number of sites and  it is possible to find recurrence 
equations for the magnetisation of each sublattice and  for the overlaps. 

If we suppose that only overlaps with one class and  two memorised patterns are 
relevant the recurrence equations are the same as for the strongly diluted model (11) 
with CY = 0. 

The problem of solving the dynamics with an  extensive number of patterns has not 
yet been solved. According to a proposal by Riedel et a1 (1988) an  effective Hamiltonian 
can be introduced. This includes a Gaussian noise term with dispersion & where r 
is a known function of q (Amit et a1 1985b). With this we can obtain the same fixed 
point equations as with the thermodynamical analysis without breaking the replica 
symmetry. 

m , ( t + l )  = c2 e r f ( w ) + c ( ~  - c ) ( e r f (x )+e r f ( .~ ) )+ ( l  -c)’erf(z) 

Introducing this noise term the recurrence equations at T = 0 are 

A0 

A 

A0 

A 

U , ] (  t + 1) =- { - c  erf( w )  + (c  - 1) erf(x) + c erf(y) + (1 - c )  erf(z)) 

U l z ( t  + 1)  =- {-c erf( w )  + (c  - 1)  erf(y) + c erf(x) + (1 - c )  erf(z)} 

with 
r =  (1 - M ) - 2  

and 

M = ( 2 / w ) { c 2  exp(-w’)+c(l  -c)(exp(x’)+exp(-y’))+(l  -c)’exp(-z’)} 

where 

w = ( m ,  + ( c -  I )u , ,  + ( c -  1 ) U I 2 ) / & T  

x = ( m , + ( c -  I )u , ,+~u,~) /&& 
m, + cU, ,  + ( c -  1) U12 

V C m  
z = ( m ,  + C U ,  , + c U 1 2 ) / ~ ‘ Z 7 .  

Y =  

These equations were iterated until a fixed point was reached. The retrieval diagram 
obtained is shown in figure 7.  In this case the transition in which all the overlaps go 
to zero is first order, according to the thermodynamical result obtained by Feigelman 
et al, and the curve is not quadratic because A/Ao does not appear only as a factor of 
a’ but also in the equation that defines r. 
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Figure 7. Storage capacity as a function of A / &  at T = 0 for the non-diluted model 

The transition in which the overlaps with the stored patterns go to zero shows the 
same behaviour to that obtained by the thermodynamical analysis, having a maximum 
value for A/Ao > 1. 

4. Conclusions 

Comparing results of sections 2 and 3 we can see that the behaviour of the systems 
with strong dilution and with no dilution is similar. The only important differences 
are as follows. 

( a )  The value of a ,  : in the strongly diluted model it is 2 /  7~ = 0.636, while in the 
non-diluted model it is 0.138 which, in fact, seems to have no importance since the 
content of information stored per synapse is similar in both cases (Canning et a1 1988). 

( b )  The order of the transition in which all overlaps go to zero: it is a first-order 
transition for the non-diluted model and second order for the strongly diluted one. 

( c )  The shape of the curve a," (see figure 1 and  7). In the non-diluted model the 
maximum value is not at A / A , =  1 but at about A/A. ,=  1.25. 

We suppose that these effects are due to temporal and  spatial correlations that are 
absent in the strongly diluted model but not in the non-diluted one at a # 0 and affect 
the equations through the parameter r. 

From figures 3 and 4 we can see that the system behaves in a similar fashion to 
that the Hopfield model, i.e. for low values of a and T there are mixed states that 
disappear before the network makes the transition to the paramagnetic state. In Derrida 
et a1 (1987) the behaviour is very different. When correlated patterns are stored the 
mixed states appear for higher values of T and a,  after that the retrieval states have 
been destroyed. The reason for the difference is that in the article by Derrida er a1 
the correlated patterns are being stored using Hebb's rule. It is easy to see that using 
this rule it is possible to store only one category, otherwise the internal field correspon- 
dent to the non-condensed patterns would not have zero mean value. 
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It is interesting to remark that with the technique used in this work remanence 
effects, that were analysed numerically in the Hopfield model (Amit et al 1985b) and  
in the hierarchical model (Bacci et a1 1989a, b) ,  cannot be found because one of the 
hypotheses was that all the patterns not included in the recurrence equations had an 
overlap order l/m. The same assumption is made to find the thermodynamical 
solution. 
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